Poprzedni wpis Poprzedni Matura sierpień 2016 zadanie 7 Na rysunku przedstawiony jest fragment wykresu funkcji liniowej f, przy czym f(0)=−2 i f(1)=0. Wykres funkcji g jest symetryczny do wykresu funkcji f względem początku układu współrzędnych. Oryginalne zadania maturalne Centralnej Komisj i Egzaminacyjnej 6. Funkcja liniowa. Proste Zadanie 6.1. [matura, maj 2010, zad.9.(1 pkt)] Prosta o równaniu y : -2x + (3m +3) przecina w układzie wspóhzędnych oś Oy w punkcie Poprzedni wpis Poprzedni Matura sierpień 2010 zadanie 9 Wierzchołek paraboli y=x2+4x−13 leży na prostej o równaniu: Następny wpis Następne Matura sierpień 2010 zadanie 7 Zbiorem rozwiązań nierówności x(x+5)>0 jest: Matura Sierpień 2010, Poziom rozszerzony (Formuła 2007) - Zadanie 23. Zgłoś uwagę do zadania Matura Czerwiec 2015, Poziom rozszerzony (Formuła 2015 Matura matematyka – Nowa Era 2015 Matura matematyka – Operon 2014 Matura matematyka – Operon 2014 (stara matura) Matura matematyka – Grudzień 2014 Matura matematyka – Sierpień 2014 Matura matematyka – Czerwiec 2014 Matura matematyka – Maj 2014 Matura matematyka – Operon 2013 Matura matematyka – Sierpień 2013 Matura http://akademia-matematyki.edu.pl/ Wierzchołek paraboli będącej wykresem funkcji kwadratowej y=f(x) ma współrzędne (2,2). Wówczas wierzchołek paraboli będące 2nJOa. Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura sierpień 2015 zadanie 21 Punkt S=(2,−5) jest środkiem odcinka AB, gdzie A=(−4,3) i B=(8,b). WtedyPunkt S=(2,−5) jest środkiem odcinka AB, gdzie A=(−4,3) i B=(8,b). WtedyChcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura sierpień 2015 zadanie 22 Dany jest trójkąt prostokątny o długościach boków a,b,c, gdzie aNastępny wpis Matura sierpień 2015 zadanie 20 Współczynnik kierunkowy prostej, na której leżą punkty A=(−4,3) oraz B=(8,7), jest równy 31 maja, 2015 11 marca, 2019 Zadanie 5 (0-1) Układ równań opisuje w układzie współrzędnych na płaszczyźnie A. zbiór pusty. B. dokładnie jeden punkt. C. dokładnie dwa różne punkty. D. zbiór nieskończony. Źródło CKE - Arkusz egzaminacyjny 2014/2015 - Matura maj poziom podstawowy Analiza: Analiza dostępna wkrótce. Odpowiedź: A. zbiór pusty. B. dokładnie jeden punkt. C. dokładnie dwa różne punkty. D. zbiór nieskończony. Matura - poziom podstawowy Egzaminy maturalne - archiwum 2017 Zadania z matury podstawowej z matematyki 2016 są obecnie wprowadzane na stronę. W niedługim czasie udostępnione zostaną odpowiedzi i analizy zadań. Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2018 - poziom podstawowy Matura 2022 - poziom podstawowy 2022 Zadanie z odpowiedzią bez analizy Zadanie z analizą i odpowiedzią Matura 2020 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2019 - poziom podstawowy Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Matura 2021 - poziom podstawowy Maj 2021 Zadanie z odpowiedzią - bez analizy Zadanie z analizą i odpowiedzią Szybka nawigacja do zadania numer: 5 10 15 20 25 30 .Niech \(a=\frac{2}{3}\), \(b=\frac{1}{2}\). Wtedy wartość wyrażenia \(\frac{a+b}{a\cdot b}\) jest równa A.\( \frac{7}{2} \) B.\( \frac{9}{5} \) C.\( \frac{7}{18} \) D.\( \frac{3}{2} \) ACenę pewnego towaru obniżano dwukrotnie, za każdym razem o \(20\%\). Takie dwie obniżki ceny tego towaru można zastąpić równoważną im jedną obniżką \( 40\% \) \( 36\% \) \( 32\% \) \( 28\% \) BLiczba \(\frac{5^{12}\cdot 9^5}{15^{10}}\) jest równa A.\( 25 \) B.\( 3^7 \) C.\( 3^3 \) D.\( \frac{25}{27} \) AW rozwinięciu dziesiętnym ułamka \(\frac{2}{7}\) na trzydziestym miejscu po przecinku stoi cyfra A.\( 7 \) B.\( 1 \) C.\( 2 \) D.\( 4 \) DWskaż największą liczbę całkowitą spełniającą nierówność \(\frac{x}{4}-\sqrt{3}\lt 0\). A.\( 5 \) B.\( 6 \) C.\( 7 \) D.\( 8 \) BWyrażenie \(9 − ( y − 3)^2\) jest równe A.\( -y^2+18 \) B.\( -y^2+6y \) C.\( -y^2 \) D.\( -y^2+6y+18 \) BIloczyn liczb spełniających równanie \(\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\) jest równy A.\( 6 \) B.\( -5 \) C.\( 5 \) D.\( -6 \) DWierzchołek paraboli będącej wykresem funkcji kwadratowej \(y = f (x)\) ma współrzędne \((2, 2)\). Wówczas wierzchołek paraboli będącej wykresem funkcji \(g(x) = f(x + 2)\) ma współrzędne A.\( (4,2) \) B.\( (0,2) \) C.\( (2,0) \) D.\( (2,4) \) BMiejsce zerowe funkcji liniowej \(f(x) = x + 3m\) jest większe od \(2\) dla każdej liczby \(m\) spełniającej warunek A.\( m\lt -\frac{2}{3} \) B.\( -\frac{2}{3}\lt m\lt \frac{1}{3} \) C.\( \frac{1}{3}\lt m\lt 1 \) D.\( m\gt 1 \) ANa rysunku przedstawiony jest wykres funkcji \(f\). Wskaż wzór funkcji, której wykres jest symetryczny do wykresu funkcji \(f\) względem osi \(Oy\) układu współrzędnych. A.\( y=f(x-4) \) B.\( y=f(x)-4 \) C.\( y=f(x+4) \) D.\( y=f(x)+4 \) COsią symetrii wykresu funkcji kwadratowej \(f(x) = −2x^2 −8x + 6\) jest prosta o równaniu A.\( y=2 \) B.\( y=-2 \) C.\( x=2 \) D.\( x=-2 \) DCiąg \((a_n)\) jest określony dla \(n\ge 1\) wzorem: \(a_n=2n-1\). Suma jedenastu początkowych wyrazów tego ciągu jest równa A.\( 101 \) B.\( 121 \) C.\( 99 \) D.\( 81 \) BDany jest ciąg arytmetyczny \((a_n)\) dla \(n\ge 1\), w którym \(a_{10}=11\) oraz \(a_{100}=111\). Wtedy różnica \(r\) tego ciągu jest równa A.\( \frac{9}{10} \) B.\( -100 \) C.\( \frac{10}{9} \) D.\( 100 \) CW trójkącie prostokątnym o długościach przyprostokątnych \(2\) i \(5\) cosinus większego z kątów ostrych jest równy A.\( \frac{5}{2} \) B.\( \frac{2}{5} \) C.\( \frac{2}{\sqrt{29}} \) D.\( \frac{5}{\sqrt{29}} \) CKąt \(\alpha \) jest ostry oraz \(3\sin \alpha -\sqrt{3}\cos \alpha =0\). Wtedy A.\( \operatorname{tg} \alpha =\frac{1}{3} \) B.\( \operatorname{tg} \alpha =3 \) C.\( \operatorname{tg} \alpha =\sqrt{3} \) D.\( \operatorname{tg} \alpha =\frac{\sqrt{3}}{3} \) DDłuższa przekątna sześciokąta foremnego ma długość \(2\sqrt{2}\). Pole tego sześciokąta jest równe A.\( 12\sqrt{3} \) B.\( 6\sqrt{3} \) C.\( 2\sqrt{3} \) D.\( 3\sqrt{3} \) DObwody dwóch trójkątów podobnych, których pola pozostają w stosunku \(1:4\), mogą być równe A.\( 9 \) i \(36\) B.\( 18 \) i \(36\) C.\( 9 \) i \(144\) D.\( 18 \) i \(144\) BPunkty \(A = (3, 2)\) i \(C\) są przeciwległymi wierzchołkami kwadratu \(ABCD\), a punkt \(O = (6,5)\) jest środkiem okręgu opisanego na tym kwadracie. Współrzędne punktu \(C\) są równe A.\( (9,8) \) B.\( (15,12) \) C.\( \left(4\frac{1}{2},3\frac{1}{2}\right) \) D.\( (3,3) \) AOkrąg opisany równaniem \((x−3)^2 + (y + 2)^2 = r^2\) jest styczny do osi \(Oy\). Promień \(r\) tego okręgu jest równy A.\( \sqrt{13} \) B.\( \sqrt{5} \) C.\( 3 \) D.\( 2 \) CKażda krawędź ostrosłupa prawidłowego trójkątnego ma długość \(9\) (ostrosłup taki jest nazywany czworościanem foremnym). Wysokość tego ostrosłupa jest równa A.\( 3\sqrt{6} \) B.\( 3\sqrt{3} \) C.\( 2\sqrt{6} \) D.\( 3\sqrt{2} \) ADane są punkty \(A = (2, 3)\) oraz \(B = (−6, −3)\). Promień okręgu wpisanego w trójkąt równoboczny \(ABC\) jest równy A.\( \frac{20\sqrt{3}}{3} \) B.\( \frac{40\sqrt{3}}{3} \) C.\( \frac{5\sqrt{3}}{3} \) D.\( \frac{10\sqrt{3}}{3} \) CPole podstawy graniastosłupa prawidłowego czworokątnego jest równe \(36\), a miara kąta nachylenia przekątnej graniastosłupa do płaszczyzny jego podstawy jest równa \(30^\circ\). Wysokość tego graniastosłupa jest równa A.\( 3\sqrt{2} \) B.\( 6\sqrt{2} \) C.\( 2\sqrt{6} \) D.\( 3\sqrt{6} \) CZe zbioru \(\{0, 1, 2, ..., 15\}\) losujemy jedną liczbę. Prawdopodobieństwo wylosowania liczby pierwszej jest równe A.\( \frac{7}{16} \) B.\( \frac{3}{8} \) C.\( \frac{6}{15} \) D.\( \frac{7}{15} \) BMedianą zestawu danych \(9, 1, 4, x, 7, 9\) jest liczba \(8\). Wtedy \(x\) może być równe A.\( 8 \) B.\( 4 \) C.\( 7 \) D.\( 9 \) DIle jest wszystkich liczb czterocyfrowych, większych od \(3000\), utworzonych wyłącznie z cyfr \(1, 2, 3\), przy założeniu, że cyfry mogą się powtarzać, ale nie wszystkie z tych cyfr muszą być wykorzystane? A.\( 3 \) B.\( 6 \) C.\( 9 \) D.\( 27 \) DRozwiąż równanie \(8x^3 +8x^2 −3x − 3 = 0\).\(x=-1\) lub \(x=\frac{\sqrt{6}}{4}\) lub \(x=-\frac{\sqrt{6}}{4}\)Rozwiąż nierówność \(5x^2 − 45 \le 0\).\(x\in \langle -3;3\rangle \)Ze zbioru liczb naturalnych dwucyfrowych losowo wybieramy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia \(A\) polegającego na tym, że otrzymamy liczbę podzielną przez \(9\) lub podzielną przez \(12\).\(P(A)=\frac{8}{45}\)Kąt \(\alpha \) jest ostry i spełnia równość \(\operatorname{tg} \alpha +\frac{1}{\operatorname{tg} \alpha }=\frac{7}{2}\). Oblicz wartość wyrażenia \(\sin \alpha \cdot \cos \alpha \).\(\frac{2}{7}\)Wykaż, że dla wszystkich nieujemnych liczb rzeczywistych \(x\), \(y\) prawdziwa jest nierówność \(x^3 + y^3 \ge x^2y + xy^2\).W prostokącie \(ABCD\) punkt \(P\) jest środkiem boku \(BC\), a punkt \(R\) jest środkiem boku \(CD\). Wykaż, że pole trójkąta \(APR\) jest równe sumie pól trójkątów \(ADR\) oraz \(PCR\). Dany jest ciąg arytmetyczny \((a_n)\) o różnicy \(r \ne 0\) i pierwszym wyrazie \(a_1 = 2\). Pierwszy, drugi i czwarty wyraz tego ciągu są odpowiednio pierwszym, drugim i trzecim wyrazem ciągu geometrycznego. Oblicz iloraz tego ciągu geometrycznego.\(q=2\)Wyznacz równanie osi symetrii trójkąta o wierzchołkach \(A = (−2, 2)\), \(B = (6, − 2)\), \(C = (10,6)\).\(y=-3x+16\)W ostrosłupie prawidłowym czworokątnym ściana boczna o polu równym \(10\) jest nachylona do płaszczyzny podstawy pod kątem \(60^\circ\). Oblicz objętość tego ostrosłupa.\(V=\frac{20\sqrt{15}}{3}\) Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura sierpień 2015 zadanie 3 Liczba 9^5⋅5^9/45^5 jest równaLiczba 9^5⋅5^9/45^5 jest równaChcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura sierpień 2015 zadanie 4 Liczba √9/7+√7/9 jest równaNastępny wpis Matura sierpień 2015 zadanie 2 Dany jest prostokąt o wymiarach 40 cm×100 cm. Jeżeli każdy z dłuższych boków tego prostokąta wydłużymy o 20%, a każdy z krótszych boków skrócimy o 20%, to w wyniku obu przekształceń pole tego prostokąta Matura poprawkowa 2015 z matematyki - ARKUSZ [STARA MATURA] MATURA POPRAWKOWA 2015. Poprawkę z matury 2015 postanowiło pisać ponad 6 tys. małopolskich maturzystów. Pisemne egzaminy poprawkowe rozpoczęły się we wtorek o godz pisemny można poprawiać tylko z jednego przedmiotu - jeśli poprawki wymaga więcej przedmiotów, uczeń nie zdaje egzaminu dojrzałości w ogóle i może do niego podejść dopiero w przyszłym ODPOWIEDZI matury poprawkowej 2015 z matematyki [STARA MATURA]Zadanie 1 - AZadanie 2 - BZadanie 3 - AZadanie 4 - DZadanie 5 - BZadanie 6 - BZadanie 7 - DZadanie 8 - AZadanie 9 - AZadanie 10 - CZadanie 11 - DZadanie 12 - BZadanie 13 - CZadanie 14 - CZadanie 15 - DZadanie 16 - DZadanie 17 - BZadanie 18 - AZadanie 19 - CZadanie 20 - AZadanie 21 - CZadanie 22 - CZadanie 23 - BZadanie 24 - DZadanie 25 - BSugerowane ODPOWIEDZI matury poprawkowej 2015 z matematyki [NOWA MATURA]Zadanie 1 - CZadanie 2 - DZadanie 3 - DZadanie 4 - BZadanie 5 - CZadanie 6 - DZadanie 7 - AZadanie 8 - CZadanie 9 - BZadanie 10 - AZadanie 11 - CZadanie 12 - AZadanie 13 - BZadanie 14 - CZadanie 15 - BZadanie 16 - BZadanie 17 - CZadanie 18 - BZadanie 19 - AZadanie 20 - DZadanie 21 - AZadanie 22 - AZadanie 23 - DZadanie 24 - CZadanie 25 - DWIDEO: Poprawki maturPisemne egzaminy poprawkowe rozpoczęły się we wtorek o godz 9. Egzaminy ustne zaczęły się w poniedziałek i potrwają do 28 sierpnia. Wyniki maturalnej poprawki będą ogłoszone 11 że w tym roku maturę w Małopolsce zdało 77 proc. uczniów, co stanowi najwyższy odsetek w kraju. Wśród nich najlepiej prezentują się krakowscy licealiści, którzy w tym roku pisali egzamin w nowej formule. Najwyższy wynik w regionie ze starej matury zanotowało także krakowskie technikum. W V Liceum Ogólnokształcącym maturę z przedmiotów obowiązkowych zdali wszyscy uczniowie, dając szkole miejsce małopolskiego lidera. Imponujący jest ich średni wynik z matury z matematyki - aż 90 procent!

matura sierpień 2015 zad 5